Anaerobic digestion and Algae Farming: Energy and Nutrients for Small Farms

Ryan Graunke and Scott Edmundson School of Natural Resources and Environment-UF Advisor – Dr. Ann C. Wilkie Soil and Water Science Department-IFAS

Florida Small Farms/Alternative Enterprises Conference July 31-August 1, 2010 Orlando, FL

Anaerobic digestion

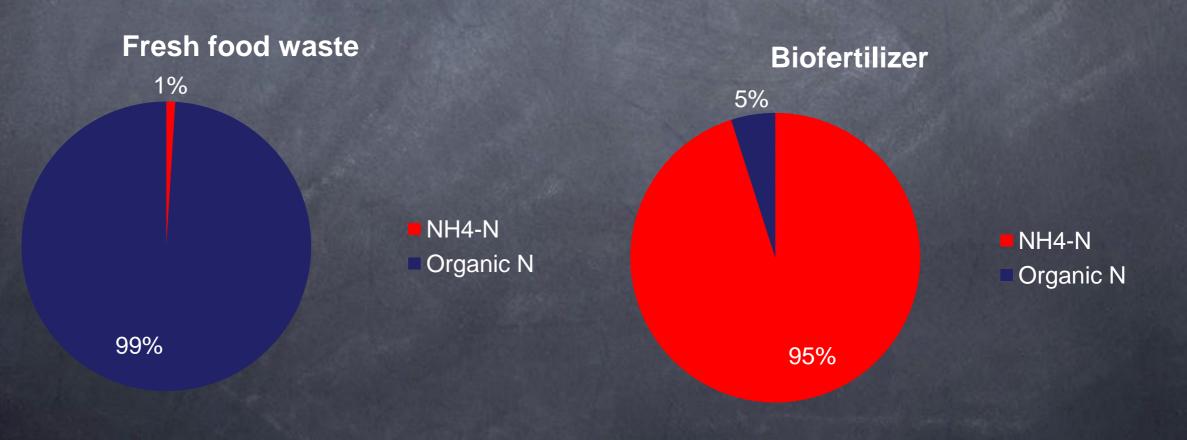
- AD is the microbial degradation of organic material under anaerobic conditions
- Produces biogas as an energy source
- Nutrients remain in effluent as source of "biofertilizer"

On-farm feedstocks

- Manure
- Crop waste/culls
- Spoiled prepared food
- Diseased plants
- Carcasses
- Energy crops
- Bioethanol/biodiesel by-products

Uses of biogas

- Cooking
- Heating (water/air/greenhouse)
- Electricity
- Gas lighting
- Vehicle fuel



Biofertilizer- nitrogen form

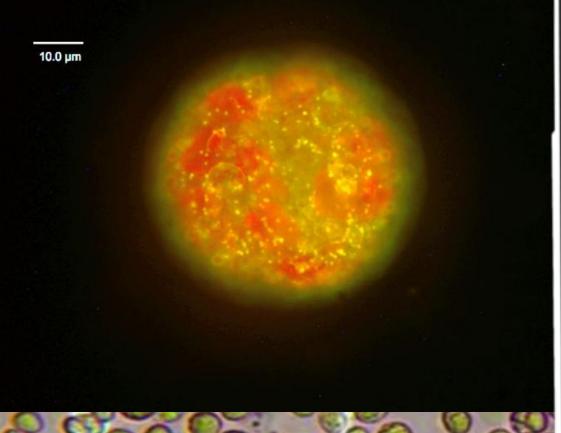
- Organic nutrients are mineralized during digestion process
- Organically-derived replacement for synthetic chemical fertilizers

Integration with composting

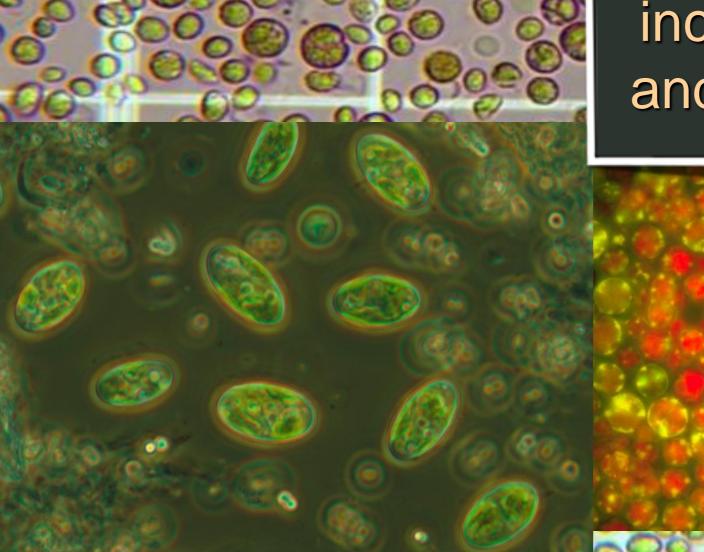
- Biofertilizer can be incorporated into existing composting systems
- Low C:N ratio of biofertilizer improves biodegradability of high carbon material (e.g. woody waste, paper)
- Helps return carbon to soil

Advantages of biofertilizer

- Nutrients converted to plant-available form
- Can be injected into existing fertigation systems
- Avoids need for spreaders



Advantages of biofertilizer


- Can be diluted to required concentrations
- Ideal for small farms implementing organic agriculture
- Facilitates urban agriculture
- Nutrients available for algal cultivation

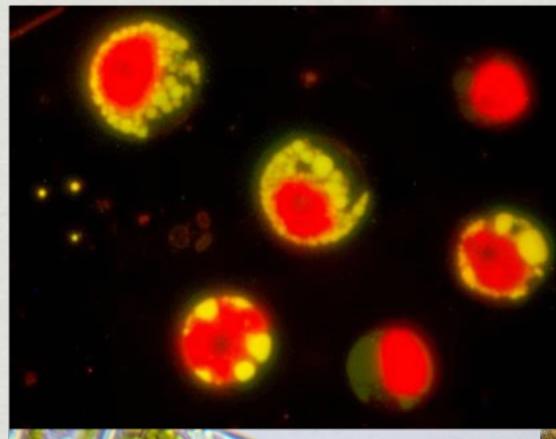
Algae : a catch-all phrase referring to any of the micro and macroscopic plants that lack true leaves, roots, and stems. Ranging in size from single-cells to giant kelps and including both prokaryotic and eukaryotic organisms.

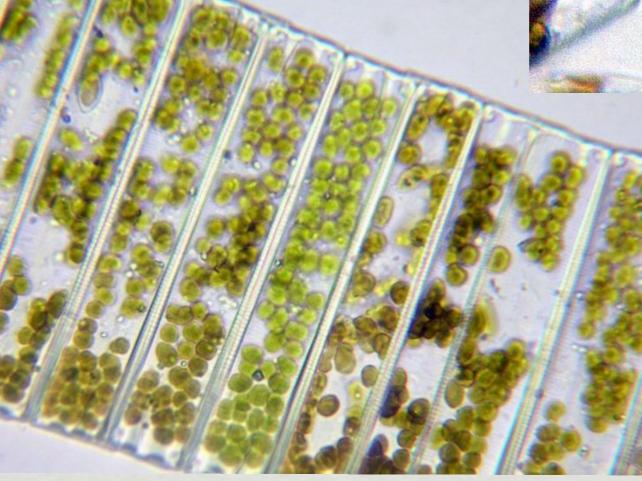
The Botanical Diversity of Algae

Algae are a diverse polyphyletic group of organisms

- 40,000 recognized species
- 10,000,000 yet to be described (Andersen 1991)
- Nine major taxonomic Divisions (always changing)
- Ubiquitous, found on every continent and in every ocean.

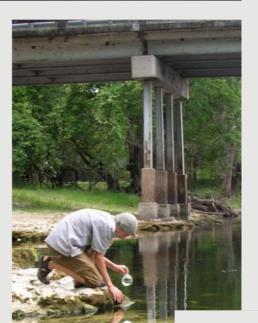
Why Algae?

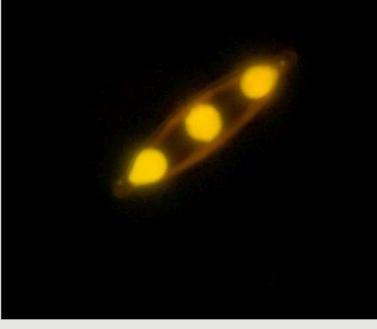

Algae produce lipids that can be used as a fuel!

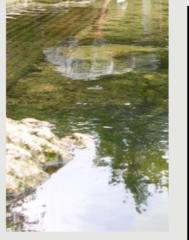

 Some algae can store up to 50% of their dry weight as oils

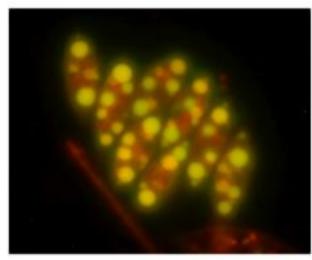
 Algae can be grown on non-arable land, where food crops simply cannot
GrOW- rooftops, deserts, oceans, wastewater treatment plants, effluent lagoons, etc.

Photo: Tim Devarenne (Texas A&M)




Algal Lipids


Phycoprospecting


Crop Discovery!

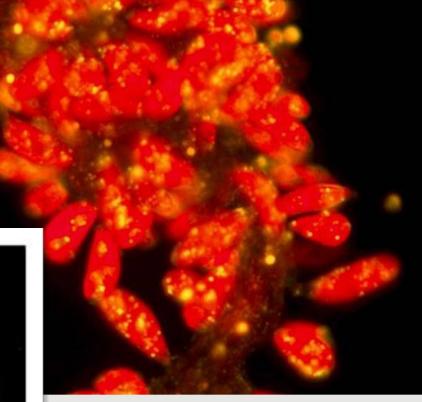

- Utilizing the fluorescent stain Nile Red (9-diethylamino-5Hbenzo[a]phenoxazine) for oil staining
 - Local algae are collected and evaluated for the to store photosynthetic energy in energy-dense oils.

Table 1

Product	Microalgae	Price (USD)	Producer
β-Carotene	Dunaliella	300–3000/kg	AquaCarotene (Washington, USA) Cognis Nutrition & Health (Australia) Cyanotech (Hawaii, USA) Nikken Sohonsha Corporation (Japan) Tianjin Lantai Biotechnology (China) Parry Pharmaceuticals (India)
Astaxanthin	Haematococcus	10,000/kg	AlgaTechnologies (Israel) Bioreal (Hawaii, USA) Cyanotech (Hawaii, USA) Mera Pharmaceuticals (Hawaii, USA) Parry Pharmaceuticals (India)
Whole-cell dietary supplements	Spirulina Chlorella Chlamydomonas	50/kg	BlueBiotech International GmbH (Germany) Cyanotech (Hawaii, USA) Earthrise Nutritionals (California, USA) Phycotransgenics (Ohio, USA)
Whole-cell aquaculture feed	Tetraselmis Nannochloropsis Isochrysis Nitzschia	70/L	Aquatic Eco-Systems (Florida, USA) BlueBiotech International GmbH (Germany) Coastal BioMarine (Connecticut, USA) Reed Mariculture (California, USA)
Polyunsaturated fatty acids	Crypthecodinium Schizochytrium	60/g	BlueBiotech International GmbH (Germany) Spectra Stable Isotopes (Maryland, USA) Martek Biosciences (Maryland, USA)
Heavy isotope labeled metabolites	N/A	1000-20,000/g	Spectra Stable Isotopes (Maryland, USA)
Phycoerythrin (fluorescent label)	Red Algae Cyanobacteria	15/mg	BlueBiotech International GmbH (Germany) Cyanotech (Hawaii, USA)
Anticancer drugs	N/A	N/A	PharmaMar (Spain)
Pharmaceutical proteins	Chlamydomonas	N/A	Rincon Pharmaceuticals (California, USA)
Biofuels	Botryococcus Chlamydomonas Chlorella Dunaliella Neochloris	N/A	Cellana (Hawaii, USA) GreenFuel Technologies (Massachusetts, US LiveFuels, Inc. (California, USA) PetroAlgae (Florida, USA) Sapphire Energy (California, USA) Solazyme, Inc. (California, USA) Solix Biofuels (Colorado, USA)

Over the years, algal biotechnology companies have brought a number of products to market, ranging from aquaculture feed to specialty chemicals. Currently, the development of pharmaceutical compounds and biofuels is a priority of the industry.

www.sciencedirect.com

A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution Julian N Rosenberg¹, George A Oyler¹, Loy Wilkinson² and Michael J Betenbaugh¹

Current Opinion in Biotechnology 2008, 19:430-436

Abundant Growth

Aquatic Advantage

- Efficient ionic exchange
- No complex support structures

Cellular Multiplicity

Daily doublings

Biomass Production Potential

Daily Biomass Harvesting

Strain	Genus	Family	Growth Rate (doublings•day)
OSCIL2	Oscillatoria	Cyanophyceae	4.23
OSCIL3	Oscillatoria	Cyanophyceae	3.50
AMPHO46	Amphora	Bacillariophyceae	2.81
NANNO13	Nannochloris	Chlorophyceae	2.78
CHLOR23	Chlorella	Chlorophyceae	2.66
SYNEC3	Synechococcus	Cyanophyceae	2.51

Adapted from: Sheehan J, Dunahay T, Benemann J, Roessler P (1998). A Look Back at the U.S. Department of Energy's Aquatic Species Program—Biodiesel from Algae. U.S. Department of Energy's Office of Fuels Development Prepared by: the National Renewable Energy Laboratory

Energy Crop Comparison

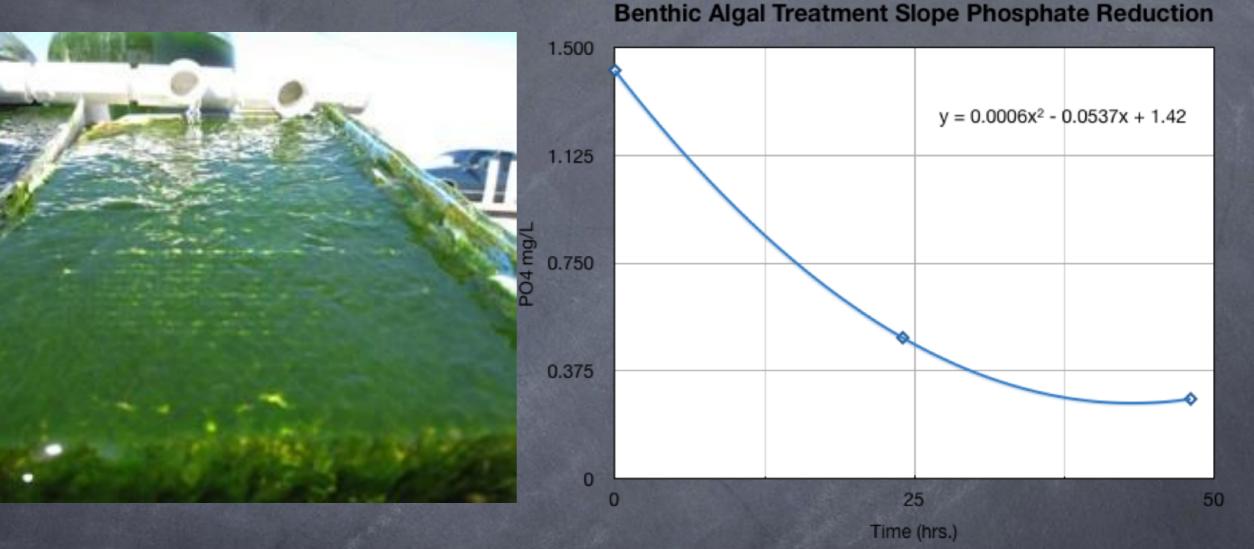
Energy Crop	Approx. Daily Biomass Production g/m2	Approx. Annual Biomass Production tons/acre
Maize grain <i>(Zea mays</i>) ¹	2.93	4.77
Grain Sorghum ¹	2.05	3.34
Soybean (<i>Glycine max</i>) ²	0.797	1.29
Sugarcane (<i>Saccharum</i> sp.) ³	13.5	22
Energycane (Saccharum) ³	12.89	20.5
Elephant grass (<i>Miscanthus</i>) ³	12.58	21
Sweet Sorghum ^₄	7.98	13
Erianthus ^₄	36.85	60
Stigeoglonium spp.⁵	42.4	69 (estimated)
1) Mason C. at al 2000		

1) Mason, S.C. et *al.* 2008. 2) Egli, D.B. 2008. 3) Prine, G.M. et *al.* 1990

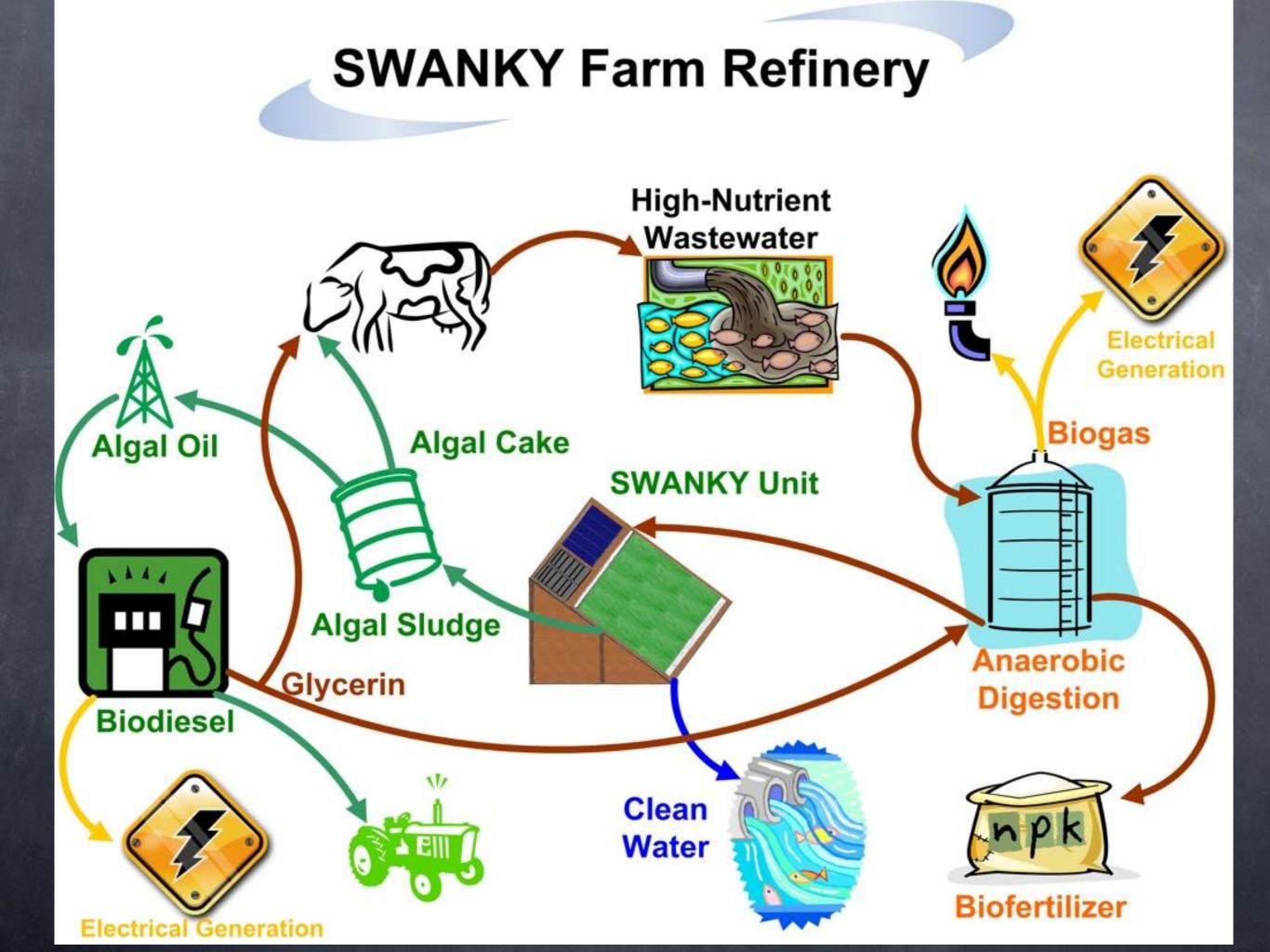
5) Fille, G.W. et al. 199

4) Mislevy, P. et *al.* 1989

5) Preliminary results



Algae can utilize wastes


Algae have been used successfully to treat N and P excess of sewage/manure wastes generated by animals and human activities (Nurdogan and Oswald 1995, Lincoln *et al.* 1996, Wilkie and Mulbury 2002).

 Algae can significantly reduce farm waste environmental impacts, while creating useful products.

Preliminary findings

Benthic algal treatment slopes using a cultivated algal polyculture

